Redox regulation of ischemic limb neovascularization – What we have learned from animal studies

نویسندگان

  • Reiko Matsui
  • Yosuke Watanabe
  • Colin E. Murdoch
چکیده

Mouse hindlimb ischemia has been widely used as a model to study peripheral artery disease. Genetic modulation of the enzymatic source of oxidants or components of the antioxidant system reveal that physiological levels of oxidants are essential to promote the process of arteriogenesis and angiogenesis after femoral artery occlusion, although mice with diabetes or atherosclerosis may have higher deleterious levels of oxidants. Therefore, fine control of oxidants is required to stimulate vascularization in the limb muscle. Oxidants transduce cellular signaling through oxidative modifications of redox sensitive cysteine thiols. Of particular importance, the reversible modification with abundant glutathione, called S-glutathionylation (or GSH adducts), is relatively stable and alters protein function including signaling, transcription, and cytoskeletal arrangement. Glutaredoxin-1 (Glrx) is an enzyme which catalyzes reversal of GSH adducts, and does not scavenge oxidants itself. Glrx may control redox signaling under fluctuation of oxidants levels. In ischemic muscle increased GSH adducts through Glrx deletion improves in vivo limb revascularization, indicating endogenous Glrx has anti-angiogenic roles. In accordance, Glrx overexpression attenuates VEGF signaling in vitro and ischemic vascularization in vivo. There are several Glrx targets including HIF-1α which may contribute to inhibition of vascularization by reducing GSH adducts. These animal studies provide a caution that excess antioxidants may be counter-productive for treatment of ischemic limbs, and highlights Glrx as a potential therapeutic target to improve ischemic limb vascularization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pathophysiology of Ischemia/Reperfusion-induced Myocardial Injury: What We Have Learned From Preconditioning and Postconditioning?

Organ damage after reperfusion of previously viable ischemic tissues is defined as ischemia/reperfusion injury. The pathophysiology of ischemia/reperfusion injury involves cellular effect of ischemia, reactive oxygen species and inflammatory cascade. Protection against ischemia/reperfusion injury may be achieved by preconditioning or postconditioning. In this review, we discuss basic mechan...

متن کامل

Sustained persistence of transplanted proangiogenic cells contributes to neovascularization and cardiac function after ischemia.

Circulating blood-derived vasculogenic cells improve neovascularization of ischemic tissue by a broad repertoire of potential therapeutic actions. Whereas initial studies documented that the cells incorporate and differentiate to cardiovascular cells, other studies suggested that short-time paracrine mechanisms mediate the beneficial effects. The question remains to what extent a physical incor...

متن کامل

Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects.

Preclinical studies in animal models and early results of clinical trials in patients suggest that intramuscular injection of naked plasmid DNA encoding vascular endothelial growth factor (VEGF) can promote neovascularization of ischemic tissues. Such neovascularization has been attributed exclusively to sprout formation of endothelial cells derived from preexisting vessels. We investigated the...

متن کامل

Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration.

BACKGROUND Previous studies have established that bone marrow-derived endothelial progenitor cells (EPCs) are present in the systemic circulation. In the current study, we investigated the hypothesis that gene transfer can be used to achieve phenotypic modulation of EPCs. METHODS AND RESULTS In vitro, ex vivo murine vascular endothelial growth factor (VEGF) 164 gene transfer augmented EPC pro...

متن کامل

O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation

Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017